

Synchronous Drive Instruction Manual

These instructions must be read thoroughly before installation or operation. This instruction manual was accurate at the time of printing. Please see **dodgeindustrial.com** for updated instruction manuals.

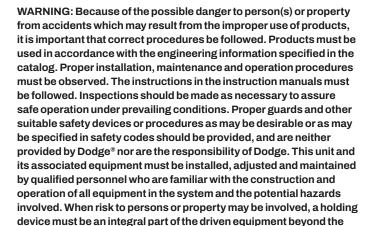
WARNING: To ensure the drive is not unexpectedly started, turn off and lock-out or tag power source before proceeding. Failure to observe these precautions could result in bodily injury.

WARNING: All products over 25 kg (55 lbs) are noted on the shipping package. Proper lifting practices are required for these products.

SPROCKET INSTALLATION

- Thoroughly inspect the bore of the sprocket and the tapered surface of the bushing. Any paint, dirt, oil or grease must be removed.
- 2. Assemble bushing into sprocket. Loosely insert the screws into assembly. At least one sprocket must have flanges.
- With key in keyseat of shaft, slide sprocket to its desired position with screw heads to the outside. If it is hard to slide the bushing onto the shaft, check shaft for burrs, etc.
- Line up assembly so as not to misalign belts and tighten screws evenly and progressively. Apply the recommended torque to screws.

SPROCKET ALIGNMENT


Synchronous sprocket alignment and parallelism of the shafts is very important. Proper alignment helps to equalize the load across the entire belt width, thereby reducing wear and extending belt life.

Place a straightedge against the outside edge of the sprockets and move sprockets until the straightedge touches the two outside and two inside edges of the sprockets. The straightedge should cross the sprockets as close to the shafts as possible. A string can be used if a straightedge is not available. Remember the string should contact at four points as explained above. An alternate method would be to use the precision laser alignment tool.

After aligning the sprockets, check the rigidity of the supporting framework. Shafts should be well supported to prevent distortion and a resulting change in the center distance under load. Do not use spring-loaded or weighted idlers. Idler sprockets or pulleys must be locked into position after adjusting belt tension.

DRIVE ALIGNMENT

Good tracking of synchronous belts on the sprockets depends upon alignment to within 1/4 degree. This translates to a maximum "M" dimension, as shown in Figure 1, of 0.05" per foot center distance.

speed reducer output shaft.

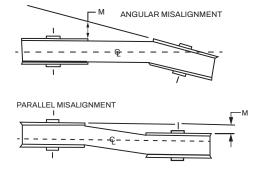


Figure 1 - Angular and Parallel Misalignment

BELT INSTALLATION AND TENSIONING

Do not pry or otherwise force the belt onto the sprockets, as this can result in permanent damage to the belt. Reduce the center distance between the pulleys so that the belt can be easily installed.

Synchronous drives must be properly tensioned. If the belt is too loose, it may jump teeth when heavier loads are applied. If the belt is too tight, belt life will suffer, and bearings will be unnecessarily overloaded. Improper tension can result in excessive drive noise.

FORCE/DEFLECTION TENSIONING PROCEDURE

First, measure the span length and calculate the deflection distance of 1/64, per inch span (see Figure 2).

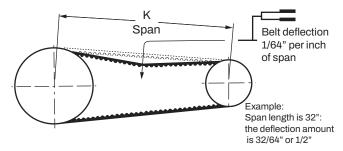


Figure 2 - Calculate Deflection Distance

Use the formula method to calculate recommended deflection forces.

Apply the calculated deflection force at the center of the span. Measure the deflection with this force applied. Move the center distance until the proper deflection is obtained.

SONIC TENSION METER METHOD

The Sonic Tension Meter measures frequency in the belt upon an applied stimulus. The meter will then provide an output of both frequency and calculated static tension. The static tension is calculated based upon three user inputs: belt width, span (as measured in the above illustration) and the mass content of the belt. Variables for belt mass constants are provided in Table 1.

Table 1 - Belt Mass Constants

Belt		Adjusted Belt Weight (g/m)
HT200	5M	4.1
HT200	8M	5.5
HT200	14M	9.6
HT250	8M	5.8
HT250	14M	9.7
HTR	8M	5.7
HTR	14M	10.1
HTRC	8M	5.5
HTRC	14M	10.1
HTD	8M	6.2
HTD	14M	9.9
HTD	20M	12.8
HT500	14M	7.9
HT500	8M	4.7

MEASURING THE SPAN VIBRATION OF THE BELT

- Input parameters of span length, belt width and the belt mass constant into the meter.
- 2. Press the MEASURE button on the meter.
- 3. Thumb the belt at center span as if strumming a guitar string.
- 4. Hold the microphone 1/4 inch away from the back of the belt.
- The tension meter will display static tension and frequency. Compare the static tension output to the T value calculated below or compare the frequency output to the formula below. Note that drive outputs of static tension and frequency are also provided on-line from the ViaSync selection program at www.ptwizard.com.

$$T = 4 * M * W * S^2 * f^2 * 10^{-9}$$

Where: T = Belt span tension (Newtons)

M = Belt mass constant (g/m)

W = Belt width (mm)

S = Span length (mm)

f = Natural frequency of the belt at

applied tension (Hz)

DRIVE TENSIONING

FORMULA METHOD

The formula method for determining belt tension may be used for greater accuracy.

*NOTE: If the formula calculation for "T" is less than "Min T. Value" (Table 2) use the "Min T. Value" for T. Always use the greater T value; such as from T Formula 1 or Table 2.

Step 1. Calculate Minimum Installation Tension: Formula 1:

$$T = \frac{20 \text{ (HP)}}{V} + \text{m}V^2$$

Where: HP = Horsepower

V = Belt Velocity/1000 (in FPM)

m = Value in Table 2

Belt Velocity = PD x RPM x 0.262 (PD = Pitch Diameter in inches)

 $\textbf{Step 2}. \ \ \textbf{Calculate Deflection Forces:}$

Formula 2:

$$MinForce = \frac{1.0 * T + \left(\frac{K}{L}\right)Y}{16}$$

Note: Use 1.1*T instead of 1.0*T for HT500 Belts

Formula 3:

$$MaxForce = \frac{1.1 * T + \left(\frac{K}{L}\right)Y}{16}$$

Note: Use 1.2*T instead of 1.1*T for HT500 Belts

Note: For used belts, use 0.7*T (HT500 use 0.8*T) instead of 1.0*T; and 0.8*T (HT500 use 0.9*T) instead of 1.1*T. See notes above for HT500 new belt values.

T = Static tension, lbs

L = Belt length, inches Y = Factor from Table 2

K = Span length, inches

CD = Center distance, inches

D = Large pulley diameter, inches

d = Small pulley diameter, inches

$$K = \sqrt{CD^2 - \frac{(D-d)^2}{4}}$$

Step 3. Adjust tension per procedure outlined in Belt Installation and Tensioning using the calculated deflection forces from Step 2, Formula 2.

Table 2 - Drive Tensioning Calculations

Table 2 - Drive Tensioning Calculations					
	Pitch	Width	m	Y	Min Ts (lb)
	5 mm	15 mm	0.28	24.9	14
	5 mm	25 mm	0.47	41.5	23
	8 mm	20 mm	0.58	34.2	19
	8 mm	30 mm	0.88	51.3	30
	8 mm	50 mm	1.46	85.5	52
HT200	8 mm	85 mm	2.45	145.3	95
	14 mm	40 mm	1.78	93.0	77
	14 mm	55 mm	2.44	127.9	120
	14 mm	85 mm	3.77	197.7	206
	14 mm	115 mm	5.11	267.5	291
	14 mm	170 mm	7.55	395.4	447
	8 mm	20 mm	0.61	33.8	22
	8 mm	30 mm	0.91	50.8	33
	8 mm	50 mm	1.52	84.6	55
	8 mm	85 mm	2.58	143.8	94
HTR	14 mm	20 mm	0.93	46.4	45
	14 mm	40 mm	1.87	92.9	89
	14 mm	85 mm	3.97	197.3	189
	14 mm	15 mm	5.37	267.0	256
	14 mm	170 mm	7.93	394.7	379
	8 mm	12 mm	0.30	56.9	25
	8 mm	22 mm	0.56	104.4	46
	8 mm	35 mm	0.89	166.1	73
	8 mm	60 mm	1.52	284.7	125
HTRC	14 mm	20 mm	0.94	221.2	82
	14 mm	42 mm	1.97	464.5	171
	14 mm	65 mm	3.04	718.9	265
	14 mm	90 mm	4.21	995.4	367
	14 mm	120 mm	5.62	1327.2	489
	20 mm	115 mm	7.24	367.0	392
	20 mm	170 mm	10.71	542.5	603
HTD	20 mm	230 mm	14.49	734.0	834
	20 mm	290 mm	18.27	925.4	1065
	20 mm	340 mm	21.42	1085.0	1258
	8 mm	20	0.54	42.29	19
	8 mm	30	0.81	63.44	30
	8 mm	50	1.35	105.7	52
	8 mm	85	2.29	179.7	95
HT250	14 mm	40	1.80	93.04	77
	14 mm	55	2.48	127.9	120
	14 mm	85	3.83	197.7	206
	14 mm	115	2.18	267.5	291
	14 mm	170	7.66	395.4	448
	8 mm	12 mm	0.33	65	28
HT500	8 mm	21 mm	0.57	113	49
	8 mm	36 mm	0.97	194	84
	8 mm	62 mm	1.68	335	145
	14 mm	20 mm	0.92	230	119
HT500	14 mm	37 mm	1.69	4.26	220
	14 mm	68 mm	3.11	782	405
	14 mm	90 mm	4.12	1035	536
	14 mm	125 mm	5.72	1438	744

SOFTWARE: VIA - SYNC

VIA-SYNC can be accessed from www.ptwizard.com. Additional troubleshooting and selection assistance is available by calling Dodge Engineering Support at 864-284-5700.

OVERHUNG LOAD CALCULATIONS

Overhung load is an important consideration for drive design. Motor and reducer bearings are rated for specific load capacities to achieve calculated life. If the drive design is such that bearing loads are exceeded, life will be proportionally reduced. Likewise, if the drive exerts a lesser load on the bearings, life will be extended. Needless to say, drive design that keeps bearing loads below ratings can pay big dividends.

BELT PULL: The basis for overhung load calculation is belt pull. Belt pull is the result of torque being transmitted when the belt exerts a pull on the sprocket diameter.

EXAMPLE: 5 hp at 200 RPM is 1,575 inch-pounds of torque. If a 6 inch diameter sprocket is used, (3 inch radius), 1,575/3 = 525 pounds effective belt pull is required. Note that if a larger diameter sprocket is used, belt pull is reduced accordingly.

Belt pull can be calculated using the following formula:

Belt Pull (lbs) =
$$\frac{126,000 \times HP \times F}{RPM \times PD}$$

Where: HP = Name plate horsepower of the motor or driver

F = Drive Factor (1.3 for synchronous belt)

RPM = Shaft RPM

PD = Pitch Diameter of Sprocket

BEARING LOAD: Belt pull translates into bearing load and is greatly affected by the location of the sprocket on the shaft. Figure 3 shows an example of what happens as the distance between the center line of belt pull and the adjacent bearing is extended.

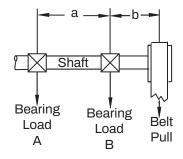


Figure 3 - Overhung Sheave

Load at B, lbs. =
$$\frac{\text{Belt Pull x } (a + b)}{a}$$

		Beit	Bearing
а	b	Pull	Load "B"
10 in	1 in	500 lbs	550 lbs
10 in	5 in	500 lbs	750 lbs

Load at A, lbs. = Belt Pull x
$$\frac{b}{a}$$

In another example, consider the same situation for a motor or gearbox. Referring to Figure 4, note that the sprocket should be mounted as close as possible to the face of the gearbox. As the distance between the gearbox face and sprocket increases, the bearing load is also increased, which leads to a reduction in bearing life.

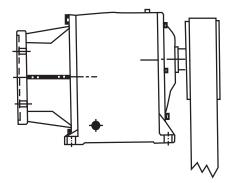


Figure 4 - Gearbox

The center line of belt pull should not extend beyond the end of the shaft. Given a choice of a small diameter, wide facewidth drive design, or a larger diameter, narrower face-width alternative, choosing the larger diameter, narrower face-width will provide a longer bearing life.

MN4056

4

DRIVE DESIGN CONSIDERATIONS

For each application there can be several drive alternatives. Contact Mechanical Power Transmission Support for Dodge products for specific questions at 864-284-5700.

	Drive Troubleshoo	oting
Problem	Cause	Remedy
Unusual	Misaligned drive	Re-adjust alignment
Noise	Hi or Low belt tension	Adjust to recommended value
	Backside idler	Use inside idler
	Worn sprocket	Replace sprocket
	Bent sprocket flange	Replace or repair
	Excessive belt speed	Redesign drive
	Incorrect belt profile	Replace with belt
	Subminimal sprocket diameter	Redesign with larger sprockets
	Excessive load	Use higher capacity drive
	Weak mounting structure	
Loss of Belt Tension	Weak mounting structure	Reinforce mounting structure
	Excessive sprocket wear	Use wear-resistant sprockets
	Fixed center drive	Install inside idler
	Excessive debris	Install adequate drive guard.
	Excessive load	Use higher capacity drive
	Subminimal sprocket diameter	Redesign drive
	Drive running hot	Use heat fingers on hot shaft
	Belt degradation	Protect from excessive heat
Belt Edge	Damaged flanges	Repair or replace sprocket
Wear	Low belt tension	Adjust to recommended value
	Poor tracking	Correct alignment
	Guard interference	Remove obstruction, add idler
Pre-mature	Improper tension	Correct drive tension
Tooth Wear	Poor alignment	Correct drive alignment
	Wrong belt type	Use correct belt
	Worn sprocket	Replace
	Damaged sprocket	Replace
	Excessive load	Use higher capacity drive
	Dirt or debris	Install adequate drive guard
	Sprocket wobble	Correct bushing installation
Tooth Shear	Shock loads	Use higher capacity drive
	Few teeth in mesh	Redesign drive
	Worn sprocket	Replace
	Backside idler	Use inside idler
	Wrong belt profile	Use correct belt
	Low belt tension	Adjust to recommended value
Tensile Break		Use higher capacity drive
	Subminimal sprocket diameter	Redesign with larger sprockets
	Debris in drive	Install adequate drive guard
	Improper belt handling, storage	Do not crimp belt or subject it to sharp bends

Drive Troubleshooting			
Problem	Cause	Remedy	
Belt Cracking	Subminimal sprocket diameter	Redesign with larger sprockets	
	Backside idler	Install inside idler	
	Start-up temp below 180 degrees F	Preheat drive before start-up	
	Extended exposure to	Protect drive	
	harsh chemicals		
Bearing Failure	Excessive belt tension	Adjust to recommended value	
	Drive misalignment	Re-adjust alignment	
	Subminimal sprocket diameter	Redesign with larger sprockets	
Vibration	Wrong belt profile	Install correct belt	
	Hi or Low belt tension	Adjust to recommended value	
	Loose key or bushing	Install per instructions	
	Loose mounting structure	Reinforce or tighten	
Belt not	Misalignment	Re-adjust alignment	
Tracking	Long center distance	Carefully adjust alignment	
	Mounting structure bending	Reinforce mounting structure	